Code No.: 14144 G ## VASAVI COLLEGE OF ENGINEERING (AUTONOMOUS), HYDERABAD Accredited by NAAC with A++ Grade ## B.E. IV-Semester Main & Backlog Examinations; June-2022 ## Optimization Methods (OE-II) Time: 3 hours Max. Marks: 60 Note: Answer all questions from Part-A and any FIVE from Part-B Part-A $(10 \times 2 = 20 \text{ Marks})$ | Q. No. | Stem of the question | M | L | CO | PO | |--------|--|---|---|----|----| | 1. | State an LP problem in standard form. | 2 | 1 | 1 | 1 | | 2. | What is optimization? | 2 | 1 | 1 | 1 | | 3. | Compare dual and primal problem? | 2 | 2 | 2 | 1 | | 4. | List special cases in simplex method. | 2 | 1 | 2 | 1 | | 5. | What do you mean feasible solution and basic feasible solution of transportation problem? | 2 | 2 | 3 | 1 | | 6. | What are the applications of CPM? | 2 | 2 | 3 | 1 | | 7. | List methods used to solve non-linear programming problems. | 2 | 1 | 4 | 1 | | 8. | Compare Newton and quasi-Newton methods. | 2 | 1 | 4 | 1 | | 9. | Find the extreme points of $Y = X^3 - 12X$ | 2 | 2 | 5 | 1 | | 10. | What is Hooke and Jeeves method? | | | 5 | 1 | | | Part-B $(5 \times 8 = 40 \text{ Marks})$ | | | | | | 11. a) | Solve the following problem graphically $ \begin{aligned} &\text{Maximize } Z = 30X_1 + 40X_2 \\ &\text{Subject to: } 3X_1 + 2X_2 \leq 600 \\ &3X_1 + 5X2 \leq 800 \\ &5X_1 + 6X2 \leq 1100 \\ &X_1 \geq 0, X_2 \geq 0 \end{aligned} $ | 5 | 3 | 1 | 4 | | b) | Define (a) Feasible solution (b) degeneracy | 3 | 2 | 1 | 4 | | 12. a) | Discuss the relationship between the regular simplex method and the revised simplex method. | 2 | 2 | 2 | 2 | | b) | Solve the following LP problem by the dual simplex method Minimize $Z = 30X_1 + 40X_2$
Subject to $2X_1 + 5X_2 \ge 6$
$3X_1 + 5X_2 \ge 8$ where $X_1, X_2 \ge 0$ | 6 | 3 | 2 | 4 | | 13. a) | The time estimate (in weeks) for the activities of a CPM network are given below. | 5 | 3 | 3 | 4 | Code No.: 14144 G | 13. | b) | Explain rules to draw network diagram. | | | 3 | 2 | 3 | 4 | | |-----|----|---|--|---|---|---|---|---|---| | 14. | a) | Solve $f(X)=X^2 + (54/X)$ using Fibonacci method, assume missed data. | | | | 6 | 3 | 4 | 4 | | | b) | Explain unimodal fun | nction. | | | 2 | 2 | 4 | 2 | | 15. | a) | Solve three iteration problem. $f(X_1, X_2) = X_1$ | ons using Univariate method for following $X_1^2 - 6X_1^2 X_2 - 4X_1X_2^2 + X_2^2$ | | | 6 | 4 | 5 | 4 | | | b) | List nonlinear program | nming con | strained methods | i. 17 | 2 | 2 | 5 | 4 | | 16. | a) | A company uses lathes, milling and grinding machines to produce
two machine parts. Following table represents the machining times
required for each part, the machining times available on different
machines and the profit on each machine part. Find the number of
parts I and II to be manufacture per week to maximize the profit. | | | | 4 | 3 | 1 | 4 | | | | Type of machine | for the | g time required
machine part
ninutes) | Maximum time
available per
week (minutes) | | | | | | | | Lathes Machines | 12 | 6 | 3000 | | | | | | | | Milling Machines | 4 | 10 | 2000 | | | | | | | | Grinding Machines | 2 | 3 | 900 | | | | | | | | Profit per unit | Rs 40 | Rs 100 | 700 | | | | | | | b) | Construct the dual to | Max. | problem $Z = 3X_1 + 5X_2$ | | 4 | 2 | 2 | 4 | | | | | 3X | $\begin{array}{l} 2X_1 + 6X_2 \le 50 \\ X_1 + 2X_2 \le 35 \\ X_1 - 3X_2 \le 10 \\ X_2 \le 20 \\ X_1, X_2 \ge 0 \end{array}$ | | | | | | | 17. | | Answer any <i>two</i> of the following: | | | | | | | | | | a) | How do you solve an unbalanced transportation problem? What is one dimensional minimization problem? | | | | 4 | 2 | 3 | 4 | | | b) | | | | | 4 | 2 | 4 | 4 | | | c) | What is the difference between constrained and unconstrained optimization? | | | | | 1 | 5 | 4 | M: Marks; L: Bloom's Taxonomy Level; CO; Course Outcome; PO: Programme Outcome | i) | Blooms Taxonomy Level – 1 | 20% | |------|-------------------------------|-----| | ii) | Blooms Taxonomy Level - 2 | 40% | | iii) | Blooms Taxonomy Level - 3 & 4 | 40% |